








Teorijska i primenjena MEHANIKA 1, 1975.

ANALYSIS OF STRUCTURALLY ORTHOTROPIC PLANE SYSTEMS

R.Bare$

~ Much theoretical (1,5,6,11,14) and experimental (10,12,13) research ‘has
been publiched which has given proof that the analysis of structurally orthotropic
plane structures can be successfully based on the analogy to the solution of a true,
materially orthotropic plate by means of the Huber equation (8); it has also been
shown that the results furnished by such an approach are reliable, unless the basic
assumptions are too oversimplified. Simplicity, clarity possibility of good insight
into the structure at any phase of the caiculation are the main advantages of the
method of analysis as derived by the present author (2,3) on the basis just
descbribed. With the author’s method it is possible to take into account also the
not insignificant factor of lateral contraction, which up to the present has been
mostly neglected in technical calculations. The Huber equation is solved by the
method of dimensionless coefficients, similarly as in (1,8,11). The values of these
coefficients can be calculated beforehand, and the numerical work can be best
handled by means of automatic computors. Once the coefficients have been
tabulated, the analysis of any given structure with defined dimensions can easily
worked out by the designer.

The structural (or shape) orthotropy of a plate is given either by different
reinforcement or different degree of prestress in two mutually perpendicular
direction, or by rigidly connecting the plate to beams in the longitudinal or the
transverse or in both these directions, respectively. Structural orthotropy results
also from intentional prevention or reduction of force transfer in the transverse
direction (assembled structures of precast elements). The true plate with material
orthotropy presents thus one limiting case, while in the other limiting case the
structure consists only of two systems of beams (longitudinal main beams and
cross beams), According to the overall arrangement as well as to the relative
importance of the individual elements (plate or slab, prismatic members, etc.) the
influence of torsion and lateral contraction upon the internal state of, stress varies
appreciatedly.
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Principles of the method

The static response of a shape orthotropic plane structure shown in fig. 1 is —
when the ,,diaphragm’’ effect is neglected — given by the Huber equation, which
£5r the equivalent plate can be written in the form (6).

a“W a4w a4w
pL X4 + 2H R ay2 +p° ay4 =p(x’y) (1)

v/here
2H = (p_ vq + PP + 7L * Ya)

and PL. Pa. YL. Ya are the unit rigidities in flexure and torsion for the
"»ngitudinal and the transverse direction, respectively. The factors v and vq
:press the stress—strain relations and their dependence on the structural

« thotropy (6).

All the sectional and material properties of the structure are determined by
: ie following three dimensionless parameters:

+e parameter of lateral stiffness-

0=—b—\/—"L— (7) (range 0 < 8 <) 2
1 Pa

the parameter of torsional stiffness

- N*7a <a<

and
the parameter of lateral contraction

n=v_ /%‘2 (2,3) (range 0<71<0,5) (4)
L
Using the factors o and 11 we can write
2H=2¢v/p, pg (5)
where

e=[n+all—¢]

denotes the parameter of the middle term in the Huber equation (0 <e<1). The
location of the point where the effects are required and the location of a
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point—load are given by the dimensionless coordinates

‘p=_7brxl ‘E:% Iand ‘IJ= Trbe
The solution of the governing Huber equation follows on the same pattern ©
has been derived in (1); here, however, the factor 1 is consistenty taken into
account in the governing equation (in the factors pg p., 2H), as well as in
boundary conditions {along the free edges) -and in the expressions for internal
stress components M, Mg, Mg, MagL., Q_, Qqa. Q_, the latter components
being expressed in terms of the derivatives to the deflection w (9). On performing
the necessary operations and simplifying, we obtain for the system according to
figl, which is subjected to a line load parallel to X, the following expressions for
the deflection and for the stress components:
the deflection- .

. mT
W(x,y)=§_—?—l; Kiyym sin — (6)

the bending moment in longitudinal direction

m7rx
ML_E 2b1T 2 {Kv(m)+n“(y)m}5m (7)

the bending moment in transverse direction

m! mmx
MQ_m 2.,32 mz [77 K(v)m+“(y)m]5'n [ ' (8)
the difference of twisting moments
m! mmx
(M_q - MQL)=r§a(1 - 5 21rm [T(yym]cos —— = (9)
the shear force in longitudinal direction
_ < Pml Yo mmx 10
Q =25 {K(y)m+(7=-5=l_=;:+n) Hiy)m JEOS—] —, (10)
the shear force in transverse direction
= 1 Yo . mmx
QQ_Epm {K(y)m 2z (n+mr(y)m}sm—-l—-, (1)
and, finally
G, = 5ot Joos -TTX (12)
QL =2 5y (Kiyym * (26 = 1) Biy)m J€05

the reactions in longitudinal direction.
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‘ In these formulas the symbols K, u, 7, and k are dimensionless coefficients
given by the expressions

md . -, , -
K(y)m'_‘m {[Am M¢m+BmN‘pm]+[Cm0 me"‘D;.n P¢m]+

*[Ohpey jm + Py |13 (13)

md -
#(v)m=—7'§ﬁ:?[e (A'mM,m + B, N‘pm)+\f—1 —€ (A, N

+Bin Mym) + € (Ciy, Oy + D Pym) +V/ T —€* (Ci Py —

L 1+e
_Dm0¢m)+\/1:_6Pha_¢|m—0|.p_¢|m] (14)

1—¢€ . _
Tiyim = [Am om +BmNcpm] 1+¢ [_Am +Bthpm]
1—¢€ , 0 T
—[Cm cpm+DmPcpm]+ 1+6[_C P +Dm tpm]

F—pn2 P '
Vﬁ ko= Im - (15)

1
K(v)m=_7[(2€ MALM tpm+Bmthm)—(2e+1) ‘:+€e
(A:n pm — B cpm) —(2e — 1)(C’m pm D—:n ¢m) (2¢ + 1) 1:66 )
(C' - 6’ 2¢ -
m om mocpm) t( mphp_wlm_2ob_w|m)] (16)

Similar expressions are obtained for the case of load evenly distributed over the
width, or for the case when the structure is loaded by external transverse bending
moments acting along the two free edges (2,3).

It may be seen that once the dimensionless coefficients have been calculated,
the rest of the calculation is quite simple, since it involves only a few algebraic
operations. The dimensionless coefficients can be in any given case determined
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easily by means of a computor, where the program can be once for all set up and
tuned beforehand. The coefficients can be also tabulated for specified
characteristic values of the governing three parameters, and in this case the analysis
of any given structure can be performed using the tabulated values together with
the interpolation formulas given below. When the latter procedure is applied, see
(1), the calculation is facilitated by the elsewhere derived fact, that for any of the
coefficients its respective value corresponding to the m — th term of the pertaining
fourier series is identic to its value pertaining to the first term of the series, but
written for the reduced magnitude m ¢ of the parameter of lateral stiffness. The
dependence of all the coefficients on n and « can — as a futher simplification —
with sufficient accuracy be expressed (for all the characteristic points ¢ and points
of load { by means of the parabolic interpolation formula

Xk = Xmin + (Xmax=Xmin) Fk)

where X, denotes the required value of the coefficient, for a given value ot 7
or/and a at a specified point ¢ for the load at y, X, is the value of the
coefficient for the minimum value of a and/or 7 at the location ¢ for the load
applied at Y, Xnax is the value of the coefficient for the maximum value of a
and/or 7 at the location ¢ for the load applied at ¥, F(k} is a function dependent
onaq,n, d, ¢ and Y. It is thus possible to tabutate the coefficients only for limit
values of o, n for a sufficiently dense net of , Y and for various values of 9 (2,3).

X
| <
T
B g
S — — —— '—as f)—ﬂ
R / *
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¢}
#—
4 o {
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If the difference of 2,5% in the true and the interpolated value is satisfactory,
the factor F(k) of interpolation for n (which is best done first} is F(k} =4, while
the factor of interpolation for a (when & > 0,45) is F(k) = Va. For § < 0,45 the
interpolation factors are given in the following table 1:

Table 1.

Dimensionless Factor F(k)

coefficient ]
K o/—0.06 + 0,909)
u forgp- ¢ ; 0: 001240729 0 ;4 = O a(1:07-1,219)
T for y = 0:0°(0,075 - 1,429) for y #0: o (—0.085+0,88%)
K o (—0,045+0,709)

More accurate expressions for the interpolation fuctions F(k) as well as the
factors F(k) for the case of evenly distributed load and for the case of external
moment loading along the edges may be found in (3}. !

Input data

In the analysis .of a given actual structure, the flexural and torisonal rigidities
are introduced as input, and these given values may considerably influence the
results of the calculations, even more than the method itself. One of the factors
which also influence the interaction and composite work of the individual
elements is the factor of lateral contraction. :

When the analysis is based on the concept of the equivalent piate, which
replaces — in the analysis — the true system, the flexural rigidity of the plate is
proportional to the flexural rigidities of the true system. These latter rigidities are
of course influenced by the prevented deformations in the perpendicular direction
due to the action of some of the members. This effect resembles the case when the
pertaining material constant E;= is raised; since the modulus of elasticity
E (Young's modulus) itself does ‘not change, the only change of the elastic
constants E;, can result from a change in the Poisson coefficients of lateral
contraction; instead of the true Poisson factors v, v, pertaining to the given
structural material, the analysis is performed with their modified values?| ;, Va-
Taking into account the influence of lateral contraction for example in the case of
structure with stiffening ribs (see fig. 2}, (3,4), we obtain the flexural rigidities as
follows:
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in the longitudinal direction

EDJDX +
PL= 1
. d+— b hy | (b —bl)lbo Vpry lVD}
bo (1—V6 { d )
+ Epry JrRx (17)
hy 11 .5 1 by v
_ y 1 9,11 PRY
b, (1-VErx b 1o (%5 bo] .
in the transverse direction
= ED JDy
Pa 1 by lo—Ii VPRX
2 d +th Fo_ |o Vp
Io (1—0% { 3 h
Epry JPRy (18)

by 5,11 Yeax
lo (1= VeRy b, [6%% |°] VeRY

)

With these values of p, and pq we calculate next the parameter of lateral stiffness

P! D
;:a —fr Zm g
— e of — et — " e _1
Py L /j__r
5 : PRy —
., D4 Annx [1
By e
Fig. 2
) , ) Pa ]
Making use of the theorem of Betti (6}, we introduce Vg =V oL and
write thus v Vg = =L =g . Then the parameter ot lateral

contraction 7 follows dlrectlyprrom the flexural rigidity of the equivalent

- pL—pL . '
plate PL=T Jen = L - ; the factor pi is
the flexural rigidity in longitudinal direction if we assume that the Poisson factor
for the material of the individual members are of zero value.
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The main problem is to determine the torsional rigidity of the substitute -

structure is such a way as to interpret the actual conditions in the best possible
manner; here we have to take into account not only the torsional rigidities of the
elements but also the true flexural rigidity as a whole and also the lateral
contraction. A simple investigation (2,3) (for example if we submit the limit
shapes of the structure to the anticlastic test) shows immediately that simple
summation of the individual torsional rigidities cannot be regarded as a
satisfactory interpretation of the torsional rigidity of the structure as a whole, and
the use of the sum of rigidities for instance in the strain energy methods can
therefore not lead to acceptable results. The torsional rigidities and their mutual
interaction are influences by the capacity to transfer tensional or compressional
stresses (the go called ,,fibre” effect), as well as by the capacity to transfer bending
stresses (the so called ,,flexural”’ effect). The torsional rigidity of the substitute
plate can be then expressed as (2,3)

_Vlgs Ep

WEIT ATy (o)
115 Ep 20

Ya=72 3ha P (20)

where a, b are the coefficients of reduction, defined as

B 2 (Mrryela " Pa

a‘/ = Muax)a Puaxla (<1 @)
= ZMrryele o (22)

b \/E(MMAX)L(pMAX)L (<1)

Here — the symbols Z (M1gyglgand Z (M7 yelL denote the absolute
value of the sum of static moments of the actual elements located in the transverse
or longitudinal section above or under the corresponding central axis, the static
moments being taken with respect to the pertaining axis;

— the symbols 2 (Mrpuelaand Z (Mpax)L denoted the absolute
value of the sum of static moments of the parts of the full slab sections, located in
the transverse or longitudinal section above or under the corresponding central
axis, the moments being again taken with respect to the pertaining axis;

— the factors p, pq are the flexural rigidities, calculated in the manner indicated
above;

>

- (Pmax)a = Pmax)L is the flexural rigidity of the full slab
whose depth is equal to the maximum depth of the true structural section.
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With these values of y together with the factors p, n found above we are able to

-calculate the dimensionless parameter a.

To illustrate the case we have shown in fig. 3 the variation of the torsional
parameter & for a concrete. slab stiffened by differently spaced and differently
deep ribs. It may be seen that simply cutting the slab (cuts of infinitesimal width)
to the depth equal to some 4/5 of overall depth, the parameter is reduced up to
less than one third of the original value, though the volume of the structure has
not been changed. Also with inreased spacing of the longitudinal and transverse
beams the values of & decreases rapidly. For example when the depth of the
longitudinal and the transverse beams is the same, and bo/bl= 1,/ = 5, then —
for the slabdepth equal to 1/5 of the overall depth — the torsional parameter « is
approximately equal to 1/3, while with the usual assumption (i.e. summing up the
individual rigidities of the elements and then distributing the obtained value over
the width and length of the structure) the torsional rigidity is obtained
considerably smaller (up to 0,1 approximately). Of great influence is naturally the
decreasing of depth of the transverse beams; thus for the limit case that the
transverse stiffness is due only to the slab (i.e. there are no transverse beams) and
when the longitudinal beams are wide apart (b,/b; = 8) we find that the
minimum value of lateral stiffness is & = 0,12. All the above given values of « are
much better in accordance with experimental results obtained by the anticlastic
tests, than the « values calculated with the usual methods.

"y/h, : hy [ = 12
1.0 - T T T —
ED=E,,R=300000up/cm"
0,75 }
N af
0501 \\\ S e f\~ Bo/n
' AR I [ N \\4
N~ 3.5‘:0 \\ﬂ\\
\\\\\ S-—‘J— Y ‘\~~~__42
025 - - Tl - —~—1
! i B Rt sy
='.___ ' — ——-7——1
0 i | ¥
04 2 5 l°/t, 10 014 5 Loy, 10

Fig. 3
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Effect of lateral contraction

When the lateral contraction, as expressed by the parameter 7, is neglected in
constants of integration (pertaining to the solution of the governing equation) as
well as in the expressions for the respective internal stress components, this result
in certains errors, which can be defined by a method derived by the author; thus
also the magnitude of error implicated in the existing usual methods of analysis
can be ascertained. By a suitable transformation of formulas (6)—(12) for the
internal stress components it is possible to find the magnitude of error which arises
due to neglecting the parameter in the governing equation and in the boundary
conditions, or which arises due to neglecting the parameter 1 only in the formulas
for internal stress components, or — finally — the error which results if 7 is
neglected throughout. In the table 2 below we have given the maximum errors for
the internal stress components (reduced weighted average according to the relative
weight of the individual stress components for specified values of ¥ and &) which
arise due to neglecting the parameter 7; the errors have been related to the chosen
value 1 = 0,25 and calculated in dependence on § and . The analysis of the results
has shown, -that neglecting the lateral contraction leads in practically all cases to
errorsrs of not negligible magnitude, and in most cases these errors lead to results
in the values of the obtained internal stress components smaller then their proper
values (this case of error is indicated by + in the table below). The interval of error
varies between 2 and 30%, for the considered case, that n = 0,25 is neglected. For
the same value n = 0,25 the maximum reduced values of error are obtained for
Q.. Mg and ‘M g (10 to 30%), for Q_ and M|_ the error is slightly less (5—20%
and 5—15%). It is noticeable that if n is neglected in only some parts of the
analysis, this does not lead to better agreement with the proper results, but can —
on the contrary — lead to even greater errors (sometimes of more than dangerous
importance) than if 1 is neglected throughout. Especially sensitive in this respect
are the stress components Mg, My o, and Qq, where the error which results due to
neglecting 1 only in the boundary condition or only in the formula defining the
respective stress component can reach tens or even hundreds of percents. All
calculation procedures which neglect or take into account the parameter 1 only in
some parts of the calculation are therefore quite inadequate. When it is not
possible to perform the exact calculation, it is better to assume 1 = 0 throughout,
keeping in mind the possible magnitude of error as indicated above.

When lateral contraction is taken into account throughout, the analysis of
shape orthotropic plane structures shows, that the internal stress components are
not evenly distributed over the width even if the load is of uniform distribution
across the width. The factor Ko (evaluated by means of the indicated method for
the indicated method for the case of evenly distributed load or by taking the
integral of the influence surface of the factor K) defines the deflection; for some
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values of 9, @, and 7, and for two locations in the corssection ¢ = 7 and p= /4
the value (1+Ko) is given in a further table 3 below.

Table 2, Maximum reduced values of error in %

o 3 7 neglected in
0,05 0,25 0,5 1,0 2,0

0 +4% +10% ———— boundary condition

0 —7%+-10% formula for M

My 0 +4% +10% ———* throughout
+8% +13% boundary condition

1 —7%+—10% formula for M

0 +8% +13% throughout

0 [5625% +232% +72%  +37% +5% boundary condition
—6007% —255% —-856% —50% —17% formula for Mg

Mq 0 +2% +7%  +11% +12% throughout
+1466% +80% +38% +24% +9% boundary condition
1 |-1583% —104% —56% —39% —21% formula for Mg
+28%  +28% +25%  +22% +20% throughout

0 boundary condition

0 0 formula for M| q

Mg ol 0. -throughout
+46% +40% +35% boundary condition

1 —33% formula for M|
+28%  +23% +17%  +15%  +13% throughout

0 +4% +10% boundary condition

0 —7%+—10% formula for Q)

0 +4% +10% throughout

—24% -17% -11% —8% - boundary condition

Q 1 © formula for Q
—-24% -17% -11% —8% throughout
—1619%  —65% —-28% -22% -—-10% boundary condition

0 formula for Qg

0 1% +3% 3% <t2% throughout

Qg +#11%  +10% +1%  +4% +2% boundary.condition
’ 0 - formula for Qg

1 +11% +10% +7% +4% <+t2% throughout

0 +3% +10% boundary condition

- 0 —7%+—10% formula for Q_
QL 0 +4% +10% ——— throughout
—65% —48% —30% ———— | boundary condition

1 +11% +7% formula for Q_
—64% —-39% —-30% throughout
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Table 3. Errors in the factor {1+K©) due to neglection of 7= 0,25

p=7 p=1/4

D] n|(a=0a=05 «=1| a=0 =05 =1

05 0 1,000 1,000 1,000 | 1,000 1,000 1,000
025 1,243 1,154 1,114 | 0,989 1,000 1,004

1,01 0 1,000 1,000 1,000 1,000 1,000 1,000
0,25) 1,340 1,184 1,127 | 0,947 0,978 0,991

Comparison shows that with increasing 77 the absolute value of the deflection
at the edge of the bridge and in its neighbourhood decreases (the decrease being in-
direct proportion to ¥ and indirect proportion to a), which shows that also the
distribution of internal stress cannot be uniform across the width. The effect of
lateral contraction upon the deflections and the stress components can be thus —
even in the case of load iniformly distributed across the width — considerably
important in a number of cases of practical interest.
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SUMMARY

The method presented here shows an exact and very expeditous approach to the analysis
of shape orthotropic plane structures of the bridge type; the calculations are very clear and
simple, so that the desired results are quickly obtainable. The analysis is based on the analogy
to the solution of a true plate (with material orthotropy) by means of the governing Huber
equation. With the presented method it is possible to take into account the lateral contraction
capacity, which is expressed by a special parameter, so that the lateral contraction of the
individual members and their interaction with regard to the deformations ofthe structure as a
whole can be calcudated without any difficulties. Some formulas leading to better (more
correct) values of the flexural and torsional rigidities have been also given, derived by the
author elsewhere; these formulas have been derived with due regard to the influence of lateral
contraction, and it is shown, what errors can arise in the various phases of the calculation
when lateral contraction is neglected. It appears, that the influence of lateral contraction may
be of utmost importance with some of the new materials, which posses considerably high
values of the Poisson coefficients (plastics, light alloys, composites, etc.).

Richard Bare§, Eng. (Civ)., PhD., Chief Research Scientist, Head of Department of
Nonhomogenious Medias, Institute of Theoretical and Applied Mechanics of
Czechoslovak Academy of Sciences, Vy3ehradska 49, 128 49 Prague 2
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12TH YUGOSLAV CONGRESS OF RATIONAL AND APPLIED MECHANICS

Sekclja: C3

o -Analysis of structurally orthotropic plane systems
03 -2 ‘ :
R.Barel

- Much theoretical /1,5,6,11,14/ and experimental /10,12,13/ research has been publi-
shed which has given proof that the aralysis of structurally orthotrcpie plane s&mctures
can be successfully based on the analogy to the solution of a true, materially orthotropic
plate by means of the Huber equauon /9/; it has also besn shoun that the results furni-
shd by such an approach are reliable, unless the basic assmphons are too oversmph-
fied. Simplicity, clarity possibility of good insight into the structure at any phase of

" the calculation are the main advantages of the method of analysis es derived by the pre-

sent author /2,3/ on the basis just described. With. the author’s method itis possible to
take. into account also the not insignificant factor of lateral contracuon, which up to )
the present has been mostly meglected in technical calculations. The Huber . equation is snl-}‘

“wed by the method of dmensxonless coefficients, similerly as in /‘1,8,11/. The values of '
'vthese coefficients can be calculated beforehand, and the mmerical work can be best handl-

o by means of automatic computors. Once the coeffu:lents have been tabulated, the analy~ -

' sis of any pven structure with defined dmensmns can easxly worked out by the desigrier.

_ The structural {or. shape-) orumropy of a plate is given ezther by different remfw—

. cmt or d1fferent degree of prestress m two. mwally pel‘pmﬂxmlar direcuou, or by ri=-- S
o gxdly conmcung the plate to ‘beams in the lmgimdmal or- the. transverse or in both these
' dzrechons, respectively. Structural orthotropy results ‘also from fntentional prevention

or reduction of force transfer in the transverse direction (assembled structures of pre- '
cast elements). The true plate with material orthotropy presents thus one limiting case, .

. while in the other limiting tise the structure consists only of two systems of beass /lon=.

gitudinal main beams and c¢ross beams)., According to the overall nrmguent as well as to.

- the relative importance of the individual elements (plate or slab, prismatic members, etc.)

the influence of torsion ‘and lateral contraction upon the internal state of stress varies
thtedly.’




. " -2
_ﬁ-‘g'g.‘_nes of the method '

7 The statu: response of a shape orthotropic plane structure shwn in fxg. lis = 'hen
the “diaphragn™ effect is neglected = given by the Huber equation, which for the eQuiva-
lent platecanheunttmmthefom/S/ . C

ﬁ?ﬂ axfayf*ﬁ ety )

where 24 = (Vg + v, + 7t re)
and }g Pas X 7% @re the unit rigidities in mxure and tersion for the longitidinal
and the transverse. dxrectmn, respectively. The factors Y, and Vy express the stress-
strain relations and their dependence on the structural u'thotropy 76/,

All the sectional mr.l material properues of the Structure are detnind by the fol-
lowing three dimensionless parameters:

the parameter oflateralrst'iffms 1ﬂ=;¢7ﬁf‘- 17/ (range 0 £ 200 )  (2)
A :

the parameter of torsional stiffness of = iﬂ— /1f(range 0= L £ / ) (3)

2(/- 7R ﬂ? :

and }
themrmtcofhtmlmhcﬁm?njﬂl’g—a/?,-;/ (range;dé?éa/f) (4)
Using the factors & and 7 v can write , "

24 2610 - )

_ £ [7*«(/-5)_/ :
dmtatheparmwofmwletemmthemwmﬁm (0‘5‘/ ). The loca-
- tion of the point where the effetts are required and the mum of a point~load are gi-

mbythedmmlcam-dxmtes;ﬂ Zy_ g’ ﬂ',m Y- '/"

where

The solution of the gwernmg Huber equation follows on the same pattern as has been deri~
ved in /1/; here, however, the factor 7 is cons:stmtly taken mto account in the go-
verning equation (in the factorsféﬁ, 2H ), s well as in bowndary conditions (along
the fru edges) amim the expressions for internal stress components. y, Ia s M0

v 45+ 8, , the latter components being expressed in terms of ‘the derivatives
- to the def]ection » A3/, On performing the necessary operations and simplifying, we ob-
tain for the system accordmg o figl, which is subjected to a line load parallel to X,
the following expressions for the deflection and for the stress cumnentr :
the deflecuon

, . | ,
pm[ - mIix

. , mEx 6)

W”‘y) g‘?ém ft'Jo #(9)07 sin 4 : )

the bending moment in Jongitudinal direction
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.the bending moment in transverse direction

M 22’3‘2 27 /7((”m*(“(y)m]f’” ) (a)'-

the dtfference of tusu.ng numt.s

b
(/120 ”az) 0274,(/ 7) [((y)m]cos m{ L, )

‘ f-tho shear force in longitudinal dzrectiou

p,,,t’

mfbm / A m ™ é— ! 7) z“(y)n/ cos ”;7"7 , 10

.the shear force in transverse direction

Q me/af{y)m*—(?*;?—ﬁ;—)‘(y)m/-f/ﬂ 7 " (ﬂ)

: a!d, fmally

¢ Zx
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. -the reactim in longxwdinal direction. g
in these -formulas Ues_ymbols £, t“ » T ,end X sredimensionless coeffzczent.s

- given by the upressions )
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 Similar expressions are obtained for. the case of load evenly distributed over the width,
o for the case when the structure is loaded by external transverse bending moments acting
. 8long the two free edges /2,3/. , '
ft'may be seen that once the dimensionless coefficients have been calculated, the
rest of the calculation is quite simple, since it involves only a few algebraic operations.
 The dimensionless coefficients can be in any given case determined easily by means of a
computor, where the progra can be once for all set up and tuned beforehand. The coeffi~_
Cients can be also tabulated for specified characteristic values of the goveminé thres
parameters, and in this case ‘the analysis of any given structure can be performed using
the tatulated values “together with the interpolation formulas given below. ¥hen the latter
procedure is amlied, see /1/, the calculation is facilitated by the elseshere derfved
fact, that for any of the coefficients its respective value corresponding to the 72 «th
ters of the pertaining Fourier series is identic o its value pertaining to the first
term of the series, but writlen for the reduced magni tude /7 A of the paraneter of late-
ral stiffaess. The dependence of all the coefficientson 7 and & can= s a futher
simplification = with sufficient accuracy be expressed (for all the characteristic pointsy
and points of load P ) by means of the parabolic interpolation formule
oy ek (- K ) g,
where Jfl denotes the required value of the coefficient, for a given value of % or/and
,d' at a specified point ¢ for the loed at p Xgin iS the value of the coefficient
~for the minimum valus of @, and/or 7 at the location ¥ for the load applied at v,
Xpax 18 the value of the coefficinet for the maximm value of o and/or 7 at the loca-
tien¥for the load applied at ¥ 4 Fk) is o function dependent on & 2., 8,
“@d ¥ o 1t is thus possible 1o tabulate the coefficients only for limit values of 2, 7




for a sufficiently dense net of ¥ ¥y

4 -+ gt for various values of A R YA
i the difference of 2,57 in the true
and the interpolated value is satisfactory,
the factor F(k) of interpolation for %
] (which is best done first) is F(k)hwhile
" the factor of interpolation for o - (when
B > 0,45) is F(K}mYK « For # < 0,45
_ the interpolation factors are given in the
h -a*— following table 13

A Fig.A
Table 1.
ey | Fectar £
v , : d(—ﬂ,%{* 9,907)
Z (-0,012+078*) (1,07-1,8/4)
M for - ¥y=0:a Ll |
: I 7{-44?:3) - 0055¢988° )
(Z- '/or V:a s a /0[' ;ﬁ'#ﬂ '7J 4
2 - (f¢04ff0,701})'

" More accurate expressions for the interpolation functions F(k) as well as the factors F(k)
for the case of evenly distr;buted load and for the case of external zozent loading along
theedgunybefound in /3/.

- ~In the analysxs of a given actual structure, the ﬁexural and torsional rigidities are
introduced as input, and these given values may consxderably influence the results of the
calculations, even more than the method itself. Ona of the factors which also influence the
interaction and composite work of the individual aleaents;s the factor of lateral contre-

When the anal ysxs is based on the concept of the equu‘alent plate, lr’neh replaces - in
the analysis - the true systes, the flexural rigidity of the plate is proporticnal to the

“flexural rigidities of the true system. These latter rigidities are of. course influenced

" by the prevented deformations in the perpendicular direction dus to the action of some of

~ the mezbers. This effect resembles the case when the pertammg material comstant E.

7oy is reised; since the modulus of elasticity € (Young's modulus) itself doa not
change, the only change of -the elastic constants E. can result frow a change in the Pois-
son coefficients of lateral contraction; instead of the true Poisson factors Ve, Y, y pertai=
ning to the given structural material, the analysis is performed with their modified values
Y, Vg » Teking into account the influence of lateral contraction for example in the case
nf structure with stiffening ribs (see fig.2}, /3,47, we oblain the Tiexural rigidities as

=




follows:”
in the longitudinal direction - :
[Jax » a [pkyjﬁkx : “ o

iy ALY ﬂl—zﬂ";,rf"’ﬁi'l—o—”j) oS -/ % E L e voax

zn ths- transverse dxrectioa

H" (/-v” /;—’I) Lo b _v_m / /o) _,,_ L Leex_ ) )
E / e j) { "”4: '/ Vegy
Fith theso valus of P and .PR we calculata naxt the mameur of lateral suffnm '
— co—— _ . ! ",—"‘*‘ _ K —t— . -—.._._. .._
S E\Apu ,
— B R Fls. . | | ,
Ilakmg use of the theoral of Betu /5/ e :mtroduce =) ,po ‘ and write thus -
2 f%
y Vo= ]5‘ = 7” Then the parsaster of lateral contrachon 7 folloss dire-
] ctly from the flexm'al ngxd:ty of the Qtnvalent plateﬁ "_p?? s o€ 7 fﬁ- A,
L

the factor ﬁ , is the flm'al rigul:ty in longi tudinal dzrectum if we assume that. the
Poisson facta' for the natorxal of the individual . members are of zem valua,
The main problem is to determne the torsional r:gldxty of the substitute structure is

such a way as to interpret the actual conditions in the best possible manner; here we have
1o take into account net only the torsional rigidities of the elements but also the true
flexural rzpdxty as a whole and also the lateral cmtractmn. A simple investigation /2,
3/ (for example if we suhut the limit shapes of the structure to the anticlastic test) l
shows immediately that simple summation of the individual torsional rigidxues cannot be
regarded as g sausfactory interpratation of the torsional rigidity of the’ structure as. a
shole, and the use -of the sug of rigidities for instance in the strain energy methods can
therefore not leag to acceptable results, The torsional rigidities and their mutual intere
action are influences by the capacity to transfer tensional or cwpressxomal stresses (the
so called “fibre™ effect), ag well as by the capac:ty to transfer bending stresses (the so'
t;allgd *flexural® effect). The torsional rxgzdxty of the subsutute plate can be then ex=
pressed as /2,3/ -
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“i where a 5. é “are the eoeffxcients of reduction, definad as

Z(Mrme)ﬂ fa__ (£1) " _7 Co(20
LaE 2 (mﬁax>ﬂ (ﬂmx)ﬁ? o ' - '
' £ 2 (Mmur)t P (24 ' (22)

Z(Mpan i Prax)e

ilere the syabols?(mm,aardx Mrpaf)l dencte the absolute value of the sum of static

- moments of the actual elanents located in the transverse or lcmg;tudmal section above or

"uldqr the’ correspondmg central axis, ths static moments being taken with respect 0 the

pertaming axisg -
= the syﬂbol:f(%,m) aMZ(mMX)L denoted the absolute value of the sue of static mo-

vmts of the parts of the full slab sections, located in the transverse or longzmdmal

sectxcn above or under the corrspondmg central axis, the moments being agam taken with

E respect t0. the pertaining ans-'
» ‘= the factors j.z ’ .PR are the flexural r1gxd1t1es, calculated in the manner indxcated abom
U ves

-( fr)hax)a (fmx ) is the flexural rxgxdity of the full slab whose depth is equal to

'-the maximum depth of the Lme structural section. _
. With these values of 7 together with the factors P, 7 found above we are able‘
N 't.o calculate the dmensmnless parameter of :

To- illustrate the nse ve have shown in f1g.3 the variation of the torsmml parame-

: S ter OC - for a concrete slab stiffened by differently spaced and differently deep ribs.
Tt way: be seen. that simply cutting the slab (cuts of infinitesimal width) to the depth

' equal to sme 4/5 of overall depth, the parameter is reduced up to less than one third of .

the original- value, though the volume of the structure has not been changed. Also with in=

. - reased spacmg of the lmgitulmal and transverse beams the values of o0 decreasa
. l‘ap:.dly. For ex&ple -’nen the depth of the longitudinal and the transverse beges is the
. same, and bo-/hl = 0,/ 4, o5, then= for the slabdepth equal 10 1/5 of the everall
" depth = the torsional paremeter O is approximately equal to 1/3, while with the

usual essumption (i.e. sumying up the individual rigidities of the elements and then dis-

'trmuung the obtained value over the width and length of the structure) the torsional pi=

gidity is obtained considerably smaller {up to 0,1 approsx-tely). Of great influence is
mturally the decreasing of depth of the transverse beams; thus for the limit case that the
transverse stiffness is due only to the slab (i.e. there are no transverse beans) and when

: mmmm:m@m&m Ay iy = Bl T iR e
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stiffress is o = §,12, A1l the above given values of <  are much betler in accor=
dance with experimental results obtained by the anticlastic test, than the - (- values
calculated nth the usual methods,

. "‘llhf‘ | ' hulhg‘”h
b 1|
» K 3 N : W :Va 015
R ) Y Y —{ = Ton” T
NS T T o
B l, . .“;\.-J\i ‘, i §*\ —l{.z_ =° \\.\\ \_4 )
12 D St by | G S
I T e —T '\§?_:-_..__,_" T &
et 5 Lj, 0 0t 5 Lj, 0
o o | g3 oy
foct of late c

When the lateral contraction, as expressed by the parameter ’7 y is neglected in
constants of integranm (pertaining to the solution of the governing equation) as well
#s in the upressmns for the respective internal. strm components, this result in cer-
‘ums errurs. -hich can be defmed by a te thod derxved by the author; thus also the magni-
tude of error. implicated in the existing usual methods of ‘analysis can be ascertained. By
@ suitable transforamtion of for-das (6)-{12) for the internal stress components it is
-possible to find. themgumdeofmnhchmduetomglwﬁng the parameter in
tlmpverningequauonawin thchnmdm‘_ycomitws, or'tnchansadue to neglecting
"thcparmta- 2 mlymthefwmlzsformtmls&essmts,c-fimuy-
 the error which results if 7 xs:wglectdﬂrwgfmt.lnthetablezuol'elave 7
given the maximum errors for the internal stress components (raducedmghtd average ac- '
cording to the relative weight of the individual stress componsnts for specified values
of‘l/qmdd')-!ncharisa duetouglecungthsparmew"? 3 the errors have
been reloted 1o ths chosen value 7 = 0,25 and calculated in dependalce on A and

A . The amalysis of the results has shown, that neglecting the lateral contraction
leads in prachcall_y all cases to errors of not neghgxble magni tude, and in most cases
these errors lead to results in the values of the obtamed iniernal stress components
smaller then their propervalu&s (thxscaseofmxsm:lzcatedb_y + in the
table below). The interval of error varies between 2 and 30%, for the ccmsxdered case,
that 7 = 0,25 is neglected. For the same value -G = 0,25 the saximm reduced va-
lm of error are obtained for Q‘L’ H&, ‘and Hm {1C to 30%), for Ql and “L the errof is
slxghtl_y less (5-20% and 5=1%). it is noticeable that if 47 is meglected ir oniy
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" some parts of the analysis, this does not lead to better agreement with the proper results,
bul can - on the contrary = lead o evem preater srors (sometimes of more than dangerous
ieportance) then if ” is meglected throughout. Especially sensitive in this respect
mthesirescmmtsllm,ﬂm, andnn uhere themmwrcsuluduemmglect-

i.ng '7 -only in the boundary condition or only in the formula defining the respective

stress component can rezch tens or even hundreds of percents. All calculatiof procedures

) ,dnchaeglutwtakemhmtunmw ’Z only in soze parts of the calcue
lations sre therefore cuite iradequate. Shen. it is not possible to perforn the exact calcus
‘lation, it is better tom 7 = 0 throughout, keeping in mind the possible magnitu-

- de of error g5 indicated above.

When lateral contraction is teken into account throughout, the analysis of shape ore
thotropic plane strurtures shows, thit the internal stress compoments are not evenly dis-
‘tributed over the width even if the load is of vnifors distribution atross the width. The
factor K° (evaluated by meams of the indicated method for the case of evenly distritvted

_Iaadorbyhkngtbmtmlofthemﬂnaxewrfmofu\e factor K) defines the de-
'ﬂatuw-fu-mvalnsof‘}.o(. e ¥, , and for two locations in the cross-
-section ? J - and ?s '”‘/ﬁ the value (l + If’) is given in @ further table 3 below.

Comparison shows that with increasing 7%  ‘the gbsolute value of the deflection at
the edge of the bridge and inxtsm@ﬂnurlmddwuse (the decrease bemgmdirect
proportion to * amd indirect proportion to- ), which shoss that also the distritu-
tion. of internal stress cammot be uniform scross the width. The effect of lateral contra-
chmupnnthedeﬂe:umsudtlnsﬁ-ssmnmumbeths-eunmthecaseof
logd uniformly distrituted scross the width ~ considerably important in a mumber of cases
‘of practical intersst,

Teble 2.  Maximm redured waluss of error in ¥

o6 o o |!
0 o ~=—— +10f ——— |boundary condition_
. o — Te-lZ - - |formda for iy
w 1 0 #4% —— +0%—  |wroupout
. 8% 13p ——= boundary condition
1 | e W — o i

0 +8% ~—— 4‘/.372 — ttrnm

0 V - A568X  +B2% * T - +37% +5% - |boundary condition
' . -£007% 5% . -8% =50% -I7% . - |formula for My
Uy N 0 2% 7% +1% +/2% throughout - -
+1468E -850 +38% 248 . |boundary condition
1 -1SERX ~10§% ~56% =39% . -21%; fmla for MQ
+28% +287 +25% +22% +20% throughout
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“Yable 2. - contirued
A A Y] neglected‘ in
| 0,05 0,25 0,5 1,0 2,0 : .
| - 2 boundary condition
0 - 0 formula for llﬂ :
-— 0 > | theoughout

T

0K O ——=

+28% - +239,

=33

Loy 8%+ BY

. boundary condition

foraula for lm
Urougfwt

10 0 esg +10%
' - C=TXe =10%
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boundary candi tion

| formula  for QL
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T =2e

| _24%,
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boundary. condition -
formula for QT. )

throughsut .

1% %= 8%
~65 - e2z  -l0%

"'-15192_7 . 7 o
1% 13y 18% <12

0

boundary. eondi tion

“formula for %

throughout

. .l 228+ 4

L +10% o R4

— -0
2H% 1Y 27% 4% 2109

- | bourdary condition

foreula for QQ
throughout

e

0 :031 olpz,,
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+/0%

| boundary condition
formula for QL ,

| throughout

0 Y -

boundary esadition
formula - for QI. ‘

throughout

7 .fable 3. Errors mthe fact& (1 +K°) due to neglection ot;. }"7, = 0,25

5 -7 p- £

! [ To T8 T XT3 S
o5 |0 |10 | 1,00 Lo - | 1,00 | 1,000 1,000

025 1,23 | 1,054 | 1,14 | 0,99 | 1,0 1,004

0 |1,000 1,000 1,000 1,000 1,000 1,000
W o [Lw0 | L L1271 | 0,947 0,978 0,991
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The method presented here shows an exact and very expeditious approach to the analw-

sis of shape orthotropic plane structures of the bridge type; the calculations are very
clear and simple, so that the desired results are quickly obtainable. The amalysis is be-
sed on the analogy to the solution of a true plate (with material orthotropy) by means of
the governing Huber equation. With the presented method it is possible to take into ac-
count the lateral contraction. éapatity, which 'is expressed by a special ﬁarameter; s0
that the lateral contraction of the individual members and their interaction with regard
1o the - -deformations of the structure as a whole can be calculated without any difficul-
es. Some formulas leading to better (more correct) values of the flexural and tnrslonal

rigi‘dit.igs have been also given, da‘iyed by ths suthor elsewhere; these fo:jiulas kave been -

derived with due repard to the influence of lateral contraction, and it is shcwn, what
_ errors can arise in the verious phases of the calculation when lateral contraction is ne-
‘ 51éctad. It appears, that the influence of lateral contraction may be of utmost importan-
ce with some of the new materials, which posses considerably high values of ths Poisson
—coeff:cuab(phsua, light alloys, composites, etc.).
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